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ABSTRACT

A semi-atomistic model is proposed for the non-ductile
failure of materials based upon an analysis of static and dynamic
stress concentrations in uniaxial fiber-matrix composite materials.
In this model the finite spacing of bonds is accounted for in the
direction of a crack or flaw, while the material is considered as
continuous in the perpendicular direction. An elementary, two-
dimensional analysis based on linear force-displacement laws shows,
that the stress concentration is dependent only upon the digital
quantity of the number of adjacent, broken filaments or bonds, and
is independent of the spacing and of the relative elastic properties
of the fiber and matrix. The form of the static stress concentra-

tion factor

K =EJ_r1_—=\/l__\/§.—
n 2 2,/d

vhere n is the number of adjacent broken bonds, c¢ is the crack depth
and d is the bond spacing, is formally equivalent to that obtained
using relations given by Griffith (Ref. 1) and Charles (Ref. 3).

The results of the elementary analysis are of sufficient
significance to warrant extension of the theory to non-linear force
elongation, and to account for temperature, stress corrosion and
static fatigue effects. 1In addition, experimental verification of
this theory should be undertaken using both covalent and ionically

bonded materials, as well as metals under conditions where non-

ductile failure occurs.



I. INTRODUCTION

The technical strength of non-ductile materials has become of
increasing interest because of their use in fibers (glass, elemental
boron, oxides, carbides, etc.) and thermosetting polymers (epoxies,
silicones, polybenzimidazoles, etc.) that form the constituents of
many high performance composites used in advanced structural applica-
tions. Further, many methods of improving the tensile strength of
metallic materials do so by reducing dislocation mobility and tend
towards generating non-ductile fracture modes, Also, the use of
refractory oxide ceramics, carbides, graphite and carbon in bulk
shapes for structural applications forces attention upon their
essentially non-~ductile failure phenomena.

Other reasons for interest in the strength and failure of non-
ductile materials are found in cryogenic applications. In these
applications, elastomeric or thermoplastic materials are often
forced to operate at temperatures below the "glass transition”,
where they exhibit brittle, non-ductile fracture associated with

catastrophic crack propagation.



II. INTRINSIC AND TECHNICAL STRENGTH OF MATERIALS

Solids derive their resistance to deformation from three
types of interatomic bonds:

~ metallic,

- ionic, and

- covalent.

A schematic representation of the force-deformation characteristic
inherent in the interatomic bond is shown in Figure 1.

Conventional materials of construction are predominantly
metallic. Metals exhibit dislocation mobility, which allows the
relief of stress concentration by what is, in effect, a premature
but non-catastrophic (i.e., "self-healing") failure mode. A general
term for this type of materials response to stress is "ductility".
Even metallic materials, however, may exhibit non-ductile fracture
where impurities, work hardening and cyclic fatigue (dislocation
pile-up), or peculiar crystallographic properties (beryllium)
restrict dislocation mobility.

Other types of materials derive their cohesion from electro-
static forces (ionic bonds) and from quantum mechanical electron
exchange forces (covalent bonds). The latter bonds are typical
for ceramics, glasses, etc. Because covalent bonding forces are

space oriented they usually prevent dislocation motion, and therefore,

in principle, can provide materials of much higher strength.



However, because of the absence of the "ductile" stress relief
mechanism possible for metallic (and some ionic) bonds, covalently
bonded materials are subject to other premature failure modes that
are associated with either static or dynamic stress concentrations
(brittle fracture).

The observed tensile strength of non-ductile materials is
orders of magnitude lower than the intrinsic interatomic cohesion
that can be derived, for instance, from their heat of sublimation.
Following original work of Griffith, Inglis, and others (Refs. 1-3)
explanations for this deficiency have been given in terms of ob-
served or postulated flaws that are responsible for microscopic
stress concentrations in a seemingly uniformly stressed body.

One unsatisfactory aspect of the classical flaw theory is its
dependence upon an isotropic, continuous medium for calculation of
the stress at the crack tip and the necessity to postulate a finite
crack tip radius to obtain finite wvalues for stress concentration
factors. Equally unsatisfactory are treatments involving a free-
surface energy or "surface tension” and related potential energy
postulates to determine critical flaw size. The first approach
obviously violates the discrete nature of molecular arrangements
that must be considered in an atomistic view of the crack tip
~geometry. The second approach deals with the static situation

prevailing at some time after the failure has occurred, and is



inéapable of accounting for the detailed. dynamic méchanisms aﬁtend—
ing the straining and failure of interatomic bonds. (A portion of
the failure energy must leave the failure domain in the form of"
thermoelastic wavelets or phonons.)

An attempt to account for finite bond spacing has been presented
by Elliot (Ref. 4). Here the material was considered as a Hookean
elastic continuum with the exception of two monatomic layers immedi-
ately adjoining the crack area. This concept allows accounting for
the non-linear force-elongation characteristics of highly strained
bonds, but suffers from the transition to continuum mechanics at an
atomic distance removed from the crack. For instance, analysis of
cohesive force distribution based on Elliot's model yields large
stress gradients in distances smaller than the interatomic spacing.
This result is difficult to reconcile with the discrete nature of
materials.

A new approach, suggested by the results of a recent study on
crack propagation in filamentary materials with partially broken
filaments (Ref. 5), avoids the necessity of postulating crack tip
radii, but retains an essentially continuum mechanical approach
suitable for analytical treatment. As applied to interatomic
dimensions this approach provides a semi-atomistic model in the
sense that finite spacing of bonds is accounted for in the direction

of the crack, while the material is considered as continuous in the



direction perpendicular to the crack. This concept is developed

here for the prediction of flaw effects on technical strength, and
is correlated with published experimental data. Extension of this
theory to non-linear force-elongation, and to account for tempera-
ture effects, stress corrosion, static fatigue, etc., is possible

in principle, but has not been carried out in detail.



ITI. FRACTURE ANALYSIS

Hedgepeth (Ref. 5) has treated the case of a one-dimensional
array of parallel elastic filaments in a matrix with elastic shear-
ing stiffness, and with a crack extending over n filaments, as
shown in Figure 2. The array is assumed to be subject to uniaxial
tension in a direction normal to the crack. The static stress con-
centration factor, Kn' for the first unbroken filament is given by

the recursion formula

. 7 (2n + 1)

Figure 3 shows the relation between the number of broken filaments,
n, and the stress concentration factor, as given in Equation 1.

Kn diverges for large n, but can be represented with high accuracy

{ 5
Kn = C;- n exp <E> (2) *

Since exp (%H) converges rapidly to unity for large n, Equation 2

for n » 10 by

can also be approximated by

K ~ XYT /n (2a)

* The derivation of this expression is due to G. Schindler and

is given in Appendix A.



I£ is significant that, within the limitations of the analysis,
the stress concentration is independent of the spacing and of the
elastic properties of fiber and matrix, and is dependent only on
a digital gquantity, i;e., the number of adjacent broken filaments.
It is.further interesting that the form of the stress con-
centration factor given in Egquation 2a is formally equivalent to
that which can be obtained by using relations.given by Griffith

(Ref. 1) and by Charles (Ref. 3) for the critical stress at failure

0oy, and for the intrinsic strength, F, respectively:
o = .[la SE 3
cr o (3)
and
a

where S is the surface energy, E is the Young's modulus, c is
the crack depth, and a is the interatomic spacing.

Combining Equations (3) and (4) yields

K = F = YT _ < _ (5)
n - Oer 2 a

In addition to the static stress concentration described by
Equation 1, dynamic overload stresses occur due to the elastic
waves generated by the sudden fracture of one or several filaments.

The dynamic overload, Ny o due to a sudden fracture of k filaments



is given by Hedgepeth (Ref. 5) for 1, 2, 3 filaments as 1.15,
1.19 and 1.20, respectively, with a limiting value of n_,Z = 1.27
for the simultaneous failure of many filaments.

This analysis assumes that k filaments fail simultaneously,
but that prior to the failure all filaments were intact. The
results of this analysis can also be used as a first approximation
to the case where pre-existing failures have generated a static
crack, and where the instantaneous failure of k additional fila-
ments produce a dynamic stress concentration.

Consider now a non-ductile material with a "flaw" in the form
of a plane region perpendicular to the direction of applied stress,
as shown in Figure 4. The flaw may either be at the surface or in
the interior of the body.

We may now use the concept of "filaments" for the arrays of
molecular bonds in the direction of the applied stress. A plane
.section parallel to the axis of stress, and passing through the
maximum diameter of the flaw, may then exhibit a picture very much
like the two-dimensional array of filaments shown in Figure 2.

The stress concentration prevailing in the bonds adjacent to the
flaw edge is given by Equation 1 or 2, and is seen to depend solely
on the number of broken bonds, n = 2c¢/d. In this equation 2c¢ is
the maximum diameter of the interior flaw (or, ¢ is the depth of a

surface flaw), and d is the spacing of the broken bonds, measured




in the plane of the flaw. With this semi-atomistic model, the

critical stress level at which crack propagation will occur becomes,

for large n,

(6)

It is seen that, according to this analysis, failure will
occur at a fraction of the intrinsic strength, and that this
fraction is dependent both on the number of broken bonds in the
pre~existing flaw, and on the nature of the micro—dynaﬁic stress

concentration caused by sudden additional bond fracture.



IV. DISCUSSION OF MICRO-DYNAMIC EFFECTS

We may distinguish three mechanisms of crack-propagation,

depending upon severity of the dynamic effect:

10

a)

b)

Quasi-static (Creeping) Crack Propagation

Crack propagation is thermochemically activated, i.e.,
the elastic wave (phonon-packet) emitted by the failure
of a single bond is insufficient to cause immediate
failure of additional bonds. The static stress .concen-
tration is high enough, however, that after sufficient
elapsed time, failure will occur by chemical attack of
adsorbed atmospheric constituents (particularly of water
in the case of silica glasses) and, possibly, by random
thermal motion. This process is similar to that which
can be postulated for surface solubility and sublimation
of solids except that the bond failure probability here
is enhanced by the mechanically induced bond strain at
the crack tip. These effects will reduce the intrinsic
bond strength, but, in this case, the "dynamic stress
concentration" can be neglected.

Transition

There is a threshold case where the transient stress
concentration of the bond failure process is sufficient

to cause failure of the adjacent bond before the dynamic



c)

stress has dissipated, but with sufficient time delay
to prevent the catastrophic interaction of phonons
emitted by consecutive failures. The speed of crack
propagation will be expected to be small compared to
the velocity of sound in the material. Dynamic over-
load factors of the order of those given in Reference 5
for single instantaneous bond failure will be expected.
Catastrophic Crack Propagation

Crack propagation is "instantaneous" in the sense that
the dynamic effect of a large number of bond failures
will accumulate causing the bond at the crack tip to
fail without thermal delay. Thus, a shock wave will be
generated that will be expected to propagate at sonic

velocity.

1l



-V. EXPERIMENTAL CORRELATION

Experiments concerning the tensile strength of glass with
flaws or initial cracks of various sizes and origins have been
reported by many investigators. The absolute values of measured
strength vary over a wide range depending on conditions of test,
size and shape of test specimens, atmosphere, aging, previous heat
treatments of glass (temper), etc. It is found by many investigators,
however, that the measured strength is inversely proportional to the
square root of the flaw size, as predicted by Equation 6. Also, a
marked dependency of failure strength with rate of load application,
"static fatigue", and slow growth of cracks that are originally
smaller than the critical size, has been well established. These
observations correlate qualitatively with the dynamic failure model
discussed here.

The theoretical critical bond failure number n, given by
Equation 6, is plotted vs Ocr /F in Figure 5, using Hedgepeth's
"two-dimensional" dynamic factors of 1.15 and 1.27 for transition
and catastrophic crack propagation, respectively, and using 1.0 for
the quasi-static case of "creeping" crack propagation. Also plotted
in Figure 5 are data from Reference 1 (for relatively large cracks)
and Reference 4 (for small surface abrasions) for comparison between

the present theory and experiments.

12




made:

For the purpose of this comparison, several assumptions were

1.

The bond spacing d was assumed to be the inverse sguare
root of the number of Si-0 bonds/unit area in fused

silica (Ref. 3) yielding

d = 5.4 3% = 2.1 x 1078 in.

We note that this wvalue is considerably larger than the

Si~0 bond distance

= S _ -8 .
aSi—O = 1.6 A .63 x 10 in.

The reason for this difference becomes evident if the
open network-structure of silica shown schematically in

Figure 6 is considered.

The intrinsic strength was assumed to be 2.5 x 10° psi

for glass tested in normal atmosphere (tests by Griffith,
Ref. 1) 1.8 x 10° psi and 3.2 x 10° psi for tests in water
and in liquid nitrogen, respectively (tests by Mould and

Southwick, Ref. 6). The value of 2.5 x 10°

psi correlates
well with experimental values obtained from thin, presumably

flaw-free filaments (Ref. 3), and with the theoretical

strength obtained from Equation 4, if the bond distance, a,

- is replaced by the bond spacing d = 5.4 A. The increase

of intrinsic strength due to immersion in liguid nitrogen

13



may be correlated to two féctors: The lower temperature
reduces thermal activation of the failure mechanism itself.
Also, the lower temperature will reduce chemical attack of
the fracture tip with attendant lowering of the residual
intrinsic bond strength such as observed in the tests

conducted immersed in water.

14



VI. CONCLUSIONS AND RECOMMENDATIONS

The semi-atomistic model of non-ductile failure appears to
predict the essential features of failure observed in.glassy\mé—
terials. The analysis here has been restricted to a two-dimensional
model and has not accounted for the detailed mechanisms attending
ah intermolecular bond failure. This refinement is, however,
possible in principle and should yield a more complete understanding
of failure mechanics on an atomic level. Two particular subjects
should be considered:

- A theoretical treatment of the dynamic failure phenomena,

including consideration of thermal vibrations, and

- An expansion of Hedgepeth's work to include three-

dimensional arrays of bonds, as well as network-structures
of the type shown in Figure 5, and to include realistic
non~linear force displacement characteristics of the
intermolecular bond.

Well controlled static and dynamic fracture experiments with
non-ductile materials of current technical interest, including
artificially induced flaws in the test specimens should be conducted
to correlate refined theoretical predictions. Such experiments
should be conducted first in inert atmospheres to eliminate the
obscuring effects of chemical crack tip attack. Later, both

theoretical and experimental work should be devoted to a quantitative

15



understanding of "stress—-corrosion" as it affects catastrophic
and creeping crack growth.

Candidate materials for such experimental studies are.refractory
metals, thermosetting polymers, thermoplastics and elastomers at
temperatures below the glass transition, and "exotic" polycrystalline

or amorphous materials such as boron, beryllium, carbon and graphites

in either bulk or fiber form.

16
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APPENDIX

Reference 5 determined the stress concentration factor, Kn'
for a plane filamentary structure in the static equilibrium in

the case of n broken filaments as follows:

« 8 ++- (2n + 2)

4 6
K = A"l
n 3«5+« 7 +c+ (2n + 1) (A=1)
For large n, expression A-1 is inconvenient to evaluate.
Equation A-1l can be written
K _ 22n n! (n+l)! (A-2)

n (2n+1) !

According to Reference 7, the quantity n! can be expressed in

the form
1
(n+{) (—n+A )

n! = V2 n . e n (A-3)
where

A - J 1 = sin 2wrx ax (A-4)

n x X T

n

r=1
Inserting (A-3) into (A-2), one obtains

n+z7 (An+An+1‘A2n+1) (A-5)

K = E v rn . n . €

Forming the natural logarithm of this expression, it follows that



' - 1 Ty 3 1\ ( 3 1
= 13 N, (0.3 + 1 2n+—) 1o (1+__) +
log X, 2 og(4 ) (nz)log (l n) 2 J 2n

- A
(An * Bpil 2n+l> (A-~6)

If n =21, the expressions log <l+%) and log (l+%_) can be writfen
n

in a power series

log (k)= 1 - L . L, 1 . 1o . _ g <-1>r‘1;.(;)r
1 1 11 11 - r-1 3 1\
log(l"’-—-): — - —_— e S - - . =Z - —_— —_—
2n 2 (2n)2 * 3 (2n)3 (-1 r 2n
r=1
After some transformations we obtain
(n+§) log (l+£> - (2n+§> log <l+_l> =
2 n 2 2n
1 1 L B (A-7)
- + = . .
2n 2 (2n) 2 n
Inserting (A-~7) into (A-6) yields
1 n 1 1 1 A A A (A
i . + + -
= — —_— + —_ + — —_— B ( +1 2 +l)
log K_ 5 log ( 4> o™ 5 2m 2 °n n n n

According to Equation (A-7), the series for B, can be majorized

as follows:



A =2 z 1 4 J’ 1§ sin2mrx g4, (A=10)
n N =3 2 . 2 3 3
47 r X r=1 (27r)
n
Now, according to Reference 7,
X g‘— = ﬁ
2 6
r=1
oo ©© 2
0 < ¥ 1 - ) 1 = L (A-11)
3 2 6
Hence:
1 1 =
A = — ¢« - - C =
n 12 n n
l_'i"l.fl?'z sinZmnrx 4. (A-12)
2z »n x> =1 (271n)3
n
- d £ :
The sum (An + An+l A2n+l> can be expressed as follows
a _ A = 1 |1 1 _ 1 -
AL+ She1 2n+l 12 [ n T o+l 2n+1
(Cn + Cn+l -~ C2n+l) (a-13)



The remainder can be estimated by

Cn + Cn+l - C2n+l £ 4 + 3 j’ _1_3. X (21];1:)3 dx =
a X~ r=1
33 . J’ -1_3 ax = 1. 1 (A-14)
277 =1 r " x 8w n2
It is further for n > 0:
Lo - 11
n+l n n2 (l+l)
n
and (A-15)
1 - 1 1
2n+1 2n (2n) 2 (1 + é_n)
Hence, Equation (A-13) reads
A A -
Byt Thel 2n+1
1 1 1 1 1 1 1
= . = - = —_— - = .= fe = L fc +C C _
2 ( n+l 2n+l>
8 n 12 [ (l - l) (l + 1 >J n2 n
n 2n
(A-16)

A-k



Equation (A-8) reads

1 T 1 1 1 1
= = IDYV+ =2 o= +=. = +
log Kn 2 log (4 ) 2 n 8 n
11 1/ 1 1 1 1 (
= e B £+ .._.-___..,__aC+C - C )
n n n+1l 2n+1
[8 n? 12 ((1+l) 4 (1+ l—5> n2
n _ 2n
or
1 ™ 5 1 -
og n > log ( 2 ) s a

The remainder A can be estimated:

Bkl g0een]

C, t Che1 ~ Con+1

Equations (A-9) and A-14) yield

1 4 5 1
= . + z_ + = -
8 (1_1) 48 8n ] (A-18)
n

X 1 5 1 1
£ Lo+ = = _— -
I Al { 8 8w ] < 100 (A-19)

N
—~
]
1
o L
o
g
"™

Hence, for n 2 10, log K, can be expressed with sufficient

accuracy by

A-5



<1r_11)+§- _]: + 01
log K, T 2 logl\j 8 a - 0. (A-20)
Since
- + 0.01
0 < e 0-01 < e = 1.01005 ... 1.011
we obtain the approximation formula
) 5.1
Kn ~ 3 Jim e 8 n (5-21)

which gives the exact wvalue for Kn within an accuracy of less
than 1.1%, if n =2 10. It is clear that Kn tends to imnfinity like

the square root of n.

A-6 NASA-Langley, 1966 CR-L4T1



